WWW.KNIGA.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Книги, пособия, учебники, издания, публикации

 


Pages:     | 1 || 3 | 4 |

«Утверждаю: Зав. каф. РЗИ _ Задорин А.С. ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ (чать I) Курс лекций для специальностей 090103 (организация и технология защиты ...»

-- [ Страница 2 ] --

Оперативная разведка (Intelligence Operations). Управление оперативной разведки (DO – Directorate for Intelligence Operations). УОР руководит всей разведработой подразделений МО по добыванию информации, а также ведет агентурную разведку (HUMINT) в интересах МО. В УОР сосредоточена вся работа по добыванию информации в мирное время, в ходе учений, при обострении обстановки, подготовки к боевым действиям и в ходе боевых действий, необходимой Вооруженным Силам США. Кроме того, УОР отвечает за планирование работы по соответствующим направлениям в МО, организацию добывания информации в интересах ОКНШ, родов войск, объединенных командований, аппарата министра обороны, а также в интересах других членов PC. В УОР на правах отдельной службы входит Служба военной агентуры (Defense HUMINT Service), в составе которой имеется Система военных атташе (Defense Attache System).

Центральная служба слежения (СМО – Central MAS1NT Organization). Занимается сбором разведывательной информации, получаемой из определенных технических источников, с помощью которой можно выявлять, локализировать, отслеживать, идентифицировать и детализировать конкретные технические параметры движущихся целей. Получаемые параметры целей накапливаются, а затем вносятся в системы идентификации и распознавания угроз, управляющие оружием с элементами искусственного интеллекта (smart weapon). Кроме того, получаемая ЦСС информация используется для анализа состояния зарубежных технологий производства вооружений, отслеживания угроз и наблюдения за выполнением соглашений по контролю вооружений. Помимо военных нужд, информация ЦСС используется для оповещения о лесных пожарах, перемещениях облаков вулканического пепла, обнаружении источников загрязнения окружающей среды, прогнозирования природных явлений. ЦСС руководит подразделениями слежения МО и других организациях PC.

Аналитическая работа (Analysis). Аналитическое управление (DI – Directorate for Analysts and Production). Аналитическое управление анализирует всю получаемую информацию о наиболее развитых вооруженных силах мира с целью обеспечения доминирования США в области военной разведки. Управление DI руководит всей аналитической работой военной разведки МО, проводимой в интересах МО, ОКНШ, родов войск, других правительственных учреждений, а также войсковой разведки. В своей работе управление использует получаемую из всех источников разведывательную информацию по региональным, транснациональным, научно-техническим, ракетно-ядерным и медицинским направлениям.





Управление разведки (J2 – Directorate for Intelligence Joint Staff). Управление J2 работает в интересах председателя ОКНШ, министра обороны, ОКОНШ и объединенных командований.

Занимается также обработкой информации, поступающей РУМО во время кризисных ситуаций с участием вооруженных сил. Кроме того, управление J2 ведет аналитическую работу в интересах МО по выявлению предкризисных ситуаций, а также выполняетт запросы объединенных командований. В составе управления J2 работает Национальный центр объединенной военной разведки (NMJIC – National Military Joint Intelligence Center). На этот центр возлагаются задачи оперативного предоставления аналитической разведывательной информации ОКНШ, командованию видов и родов Вооруженных Сил США, а также политическим структурам во время кризисов и быстро развивающихся ситуаций, представляющих собой угрозу национальной безопасности США. В ведении управления J2 находятся также подразделения, обеспечивающие работу сети военной разведки (DIN – Defense Intelligence Network), предназначенной для обеспечения оперативного поступления разведданных к руководителям МО и других, военных и правительственных учреждений.

Управление военных доктрин (Directorate for Policy Support). УВД представляет интересы разведки при разработке политических документов, регламентирующих развитие Вооруженных Сил США. Управление работает в тесном контакте с аппаратом министра обороны, а также представляет военную разведку в СНБ и госдепартаменте.

Вспомогательные службы (Support Services):

Административное управление (Directorate for Administration). В ведении административного управления находятся службы контрразведки и внутренней безопасности (Сounterintelligence and Security), кадров (Office for Human Resource), инженерного обеспечения и логистики (Office of Engineering and Logistic) и материально-технического обеспечения (Office for Procurement). Кроме того, в структуру Административного управления входит Учебный центр объединенной военной разведки (JMITC – Joint Military Intelligence Training Center), который обеспечивает повышение квалификации кадров офицеров и служащих МО, сотрудников других правительственных и федеральных органов, а также офицеров, находящихся за пределами США (с использованием Internet).

Управление информационных систем и служб (Directorate for Information Systems and Services). Представляет собой основной орган РУМО по обеспечению информационной поддержки разведывательной работы. УИСС отвечает за бесперебойную работу всех информационных систем РУМО, а также за закупку новых информационных технологий. Кроме того, УИСС контролирует и аттестует информационные разведсистемы МО.

В ведении этого управления находится всемирная объединенная разведывательная информационная система (JWICS – Joint Work Intelligence Communication System), обеспечивающая надежный и высокоскоростной обмен видеоинформацией и данными между основными разведцентрами. Управление также разрабатывает и внедряет инициативные проекты, такие, как виртуальная архитектура объединенной разведки (JIVA – Joint Intelligence Virtual Architecture), которая позволяет обеспечить аналитикам доступ к самому современному компьютерному оборудованию, программному обеспечению и ко всей разведывательной информации из любой точки мира.

Колледж объединенной военной разведки (JMIC – Joint Military Intelligence College). Готовит профессиональных разведчиков образовательных уровней «Бакалавр разведывательных наук» (Bachelor of Science in Intelligence) и «Магистр наук стратегической разведки» (Master of Science in Strategic Intelligence).

2.5.4 АНБ (NSA).

АНБ – ключевая американская спецслужба в области разведки связи. АНБ подчиняется непосредственно министру обороны и так же как и РУМО, имеет статус органа боевого обеспечения МО США. АНБ занимается прослушиванием радиоэфира, телефонных линий, компьютерных и модемных систем, излучений факсовых аппаратов, а также сигналов, излучаемых РЛС и установками наведения ракет.

АНБ также отслеживает излучения и сигналы, излучаемые космическими аппаратами, а также излучения и сигналы, идущие с испытательных ракетных полигонов иностранных государств.

Вторая задача АНБ – обеспечивать безопасность всех правительственных линий связи.

АНБ не занимается открытыми материалами, передаваемыми по общедоступным коммуникационным каналам, но с некоторыми, весьма существенными оговорками, – если эти материалы не предназначены для последующего шифрования и если они не содержат “скрытых сообщений”. Важность этой оговорки в том, что АНБ, фактически, контролирует все коммуникации, осуществляя цензуру средств массовой информации.

Центральная служба безопасности (CSS – Central Security Service) АНБ отвечает в США за криптоанализ и криптобезопасность. Перед ЦСБ стоят две задачи:

1) дешифрование иностранных кодов, 2)обеспечение безопасности информационных систем путем шифрования официальных материалов, передающихся средствами связи.

Структура АНБ изображена на рисунке 2.5:

Директор АНБ одновременно является и начальником ЦСС и руководит обеими структурами через своих заместителей – заместителя директора АНБ и заместителя директора ЦСС.

Должность заместителя директора АНБ занимает гражданский сотрудник, обладающий высокой квалификацией в технической области. Должность заместителя ЦСС занимает кадровый военный (как минимум, генерал-лейтенант), назначаемый, как и директор АНБ, министром обороны.

Шифровальные службы, входящие в состав видов и родов войск, по всем вопросам, связанным с соответствующей деятельностью, подчиняются непосредственно ЦСС. При выполнении отдельных заданий в оперативное подчинение ЦСС могут передаваться и другие подразделения МО, занятые радиотехнической разведкой и перехватом.

В состав ЦCC входят следующие подразделения:

Командование по разведке л безопасности Армии США (INSCOM – Аrmу Intelligence & Security Command). Командованию подчинены: командование внешней разведки Армии США (US Army Foreign Intelligence Command), специальная группа no безопасности Армии США (US Army Special Security Group), 66-я группа армейской разведки Европейского командования RSOC (66lh Army Intelligence Group European Command RSOC) 513-я бригада войсковой разведки Центрального командования RSOC (513th Military Intelligence Brigade Central Command RSOC), 704-я бригада войсковой разведки (704,h Military Intelligence Brigade) и 902-я группа войсковой разведки (902nd Military Intelligence Group).

Рис. 2.5. Cтруктура АНБ США.

Командование группы безопасности ВМФ (Naval Security Group Command). В ведении этого командования находятся станции слежения и радиоперехвата, находящиеся на о.

Гуам, о. Диего-Гарсиа, в шт. Мэн, на Аляске и в Шотландии.

входят: центр специального назначения 696-Й разведгруппы (Special Activeties Center 696th Intelligence Group), центр радиоэлектронной борьбы ВВС (AF Information Warfare Center), группа разведывательных систем (Intelligence System Group), 67-е разведывая разведгруппа (694th Intelligence тельное авиакрыло (67* Intelligence Wing) и В отличие от других разведывательных организаций, таких как ЦРУ или РУМО, АНБ старается тщательно скрывать свою структуру. По некоторым сведениям, АНБ состоит из пяти управлений, каждое из которых подразделяется на отдельные группы.

Оперативное управление (Operations Directorate) отвечает за сбор и обработку информации из каналов связи. Группы, входящие в его состав, совместно с ЦСС ведут разведку каналов связи по географическим регионам. Для разведки используются как стационарные станции слежения, так и подвижные.

Группа А. Ведет разведку каналов связи, находящихся на территории стран бывшего Советского блока.

Группа В. Ведет разведку каналов связи, находящихся на территории стран Азии, таких, Группа С. Ведет разведку каналов связи, находящихся на территории стран, не охваченных группами А и В.

Управление технологий и сметем (Technology and Systems Directorate) занимается разработкой новых технологий сбора и обработки разведывательной информации. Входящая в его состав группа R занимается научно- исследовательской и проектноконструкторской работой. Эта группа изучает требования, выдвигаемые к системам разведки связи, к формирует на их основе тактико-технические характеристики оборудования, поставляемого АНБ. Она определяет требуемые показатели производительности оборудования и обеспечивает их соответствие заданному уровню во время эксплуатации. Группа разрабатывает требования к внутренним и внешним интерфейсам оборудования, определяет программы его испытаний и сопровождает все проектноконструкторские и производственные работы до ввода нового оборудования в эксплуатацию. Группа играет роль научно-исследовательского центра по технологиям разведки сигналов и занимается оценкой алгоритмов, баз данных и концепций отображения информации. Группа обладает оборудованием для проведения научно-исследовательских работ в области обработки аудио- и речевых сигналов, а также занимается оценкой технологий распознавания речи в применении к задачам разведки.

Управление безопасности информационных систем (Information Systems Security Directorate) отвечает за безопасность коммуникаций АНБ и защиту информации в правительственных линиях связи.

Группа К.. Руководит криптологической работой АНБ, оказывая теоретическую и другую поддержку работам по защите линий связи правительства США и перехвату информации из каналов связи других стран.

Группа T. Группа по телекоммуникациям. Руководит всеми работами, выполнявшимися в области проектирования, разработки, внедрения и эксплуатации специальных коммуникационных разведсетей и систем, предназначенных для передачи данных, собираемых подразделениями технической разведки.

Группа I. Группа программ информационной безопасности. Эта группа разрабатывает, внедряет и контролирует различные программы в области информационной безопасности, государственной тайны, образования и обеспечения режима.

Группа S. Группа стандартов и оценок. Данная группа разрабатывает и внедряет различные стандарты в области информационной безопасности, и защиты государственной тайны, образования и обеспечения режима, а также контролирует их соблюдение. Группа руководит программой обеспечения режима на производстве, занимаясь экспертизами и выдачей разрешений при выполнении работ, связанных с государственной тайной. Она также представляет интересы правительства США при согласовании контрактов, а также в различных технических советах. Эта группа осуществляет контроль соблюдения режима по контрактам, связанным с государственной тайной. Именно на эту группу возлагается основная нагрузка по разработке и сертификации оборудования и процедур, используемых для зашиты коммуникаций.

Группа V. Группа безопасности сетей. Эта группа разрабатывает, внедряет и контролирует различные программы в области безопасности коммуникационных сетей, а также соответствующих производственных вопросов.

Группа Y. Назначение группы неизвестно.

Группа С. Группа технической политики и планирования ресурсов. Данная группа отвечает за разработку текущей, краткосрочной и долгосрочной технической политики, а также за планирование ресурсов, необходимых для решения текущих и перспективных задач информационной безопасности. Она устанавливает потребности в ресурсах, разрабатывает критерии оценки и готовит программы развития для текущих проектов, а также определяет необходимость приобретения или строительства новых мощностей.

Группа X. Предположительно – группа по системам специального доступа. Точное назначение группы неизвестно.

Упрощение планирования, политики и программ (Plans Policy and Programs Directorate) – отвечает за выполнение работ, обеспечивающих работу основных управлений, а также определяет генеральную линию развития АНБ.

Группа D. Группа директора АНБ. В ведении группы находятся все задачи программы, планы и проекты, реализуемые АНБ и ЦСС. Кроме того, группа представляет АНБ в комитетах и советах PC, координирующих работу технических разведок.

Группа Q. Группа планов и политики. Данная группа играет роль штаба директора АНБ и высшего руководства по Инициализации, разработке интеграции, координации и мониторинга политики, планов, программ и. проектов АНБ. Группа отвечает за контроль программ АНБ/ЦСС, контроль методов управления организацией, контроль командноштабной работы и планирования работы в чрезвычайных ситуациях, контроль проектов и научных изысканий АНБ, исследование операций и экономический анализ, стратегическое планирование АНБ. допуск личного состава и кадровую работу.

Группа J. Юридическая группа. Данная группа играет роль штаба директора АНБ и высшего руководства по юридическим вопросам.

Группа N. Группа программ. Эта группа совместно с другими подразделениями АНБ определяет текущие, краткосрочные и долгосрочные потребности в дополнительных мощностях. Она устанавливает потребности в мощностях, разрабатывает критерии оценки и готовит программы развития имеющихся мощностей, а также определяет необходимость приобретения или строительства новых.

Группа U. Группа генерального юрисконсульта. Обеспечивает юридическую поддержку директора и руководства АНБ по вопросам, затрагивающим интересы АНБ, контролирует личный состав АНБ, работающий в области юриспруденции, ведет переговоры с другими учреждениями по юридическим вопросам, связанным с АНБ, а также руководит соответствующими программами.

Управление вспомогательных служб (Support Services Directorate) занимается административной работой.

Группа Е. Группа сопровождения контрактов. Отвечает за разработку и сопровождения контрактов, заключаемых АНБ со всеми поставщиками.

Группа М. Административная группа. Данная группа играет роль штаба директора и высшего руководства АНБ по всем организационным вопросам, за исключением поставок оборудования и программного обеспечения, – печать и публикации; библиотечное дело; почтовые отправления: командировки; аудиовизуальные средства; производства и выставки: делопроизводство, формы и переписка; руководство работой комитетов; аутентификация публикаций, директив и коммуникаций.

Группа L. Группа логистики. Занимается сопровождением всех грузов и почтовых отправлений, включая курьерскую почту МО.

АНБ находится в г. Форт Мид (штат Мэриленд). Подразделения космической разведки АНБ снимают информацию с двух типов искусственных спутников Земли: с космических аппаратов, транслирующих на землю телефонные переговоры, факсовые сообщения, а также сигналы компьютерных модемов- и с военных разведывательных аппаратов, обеспечивающих двухстороннюю радиосвязь, телефонную связь (внутри стран) и передачу других электронных сигналов.

Спектр услуг, которые агентство способно оказывать военно-политическому руководству США, весьма широк. Если поступает заказ на слежку за какой-то определенной страной, АНБ может прослушивать внутренние и международные телефонные линии, включая: перехват звонков, которые делаются из автомобилей; сообщений поступающих в столицу государства из зарубежных посольств и исходящих из нее в посольство; сообщения из других держав, касающихся "целевой" страны; радиосвязи вооруженных сил этой страны. При этом поиск может вестись по ключевым словам и выражениям, звучащим на разных языках. Одновременно в АНБ поднимаются все ранее накопленные материалы по стране. На основе данных прослушивания создаются психологические портреты лидеров государств.

АНБ тесно сотрудничает с британским Штабом правительственной связи канадской Службой безопасности связи, австралийским Управлением военной связи и новозеландским Бюро безопасности связи и рамках глобального международного договора по разведке. Начиная с 1990 года, АНБ стало основное внимание уделять добыванию экономической, а не военной информации, чтобы оправдать перед американскими налогоплательщиками свой огромный бюджет (один лишь годовой счет за потребленную электроэнергию агентства исчисляется десятками миллионов долларов).

Однако, по-видимому, эти меры оказались недостаточны и с 2000 года в АНБ взят курс на перестройку обеспечения работы агентства. Основной акцент этой перестройки сделан на передачу в частный сектор сопровождения практически всех технологий, не связанных с добыванием информации по техническим каналам. На перестройку уйдет до 10 лет, а стоимость единого контракта составляет не менее 5 млрд долларов.

2.5.5 НУВКР (NRO).

НУВКР – американская спецслужба, отвечающая за ведение стратегической воздушнокосмической разведки и воздушного наблюдения. Осуществляет свои функции с помощью космических спутников и самолетов-разведчиков U-2.

НУВКР несет ответственность за разработку и создание всех американских разведывательных спутников, а также за их последующее использование. В задачи управления входят:

предупреждение и оповещение о выявленных на основе поставляемой спутниками информации угрозах; контроль за выполнением соглашений о сокращении вооружений; наблюдение из космоса за военными операциями и маневрами, а также за природными бедствиями и катаклизмами; обеспечение спутниковой поддержки программ изучения и защиты окружающей среды. В распоряжении НУВКР имеются спутники радиолокационного дозора, разведки каналов связи и другие спутники специального назначения для обеспечения и контроля всех возможных видов связи. НУВКР также отвечает за добывание данных для составления компьютерных карт целеуказания, наведения управляемых ракет большой дальности.

Управление является структурным подразделением МО США, но в PC входит на правах самостоятельного участника (и, следовательно, по вопросам разведки подчиняется ДЦР). В распоряжении НУВКР находится множество наземных станций, принимающих информацию со спутников в разных точках земного шара.

Структурно НУВКР состоит из аппарата директора, четырех управлений и ряда отделов.

Основные подразделения:

Управление радиотехнической разведки (S1GINT Systems Acquisition &Operations Directorate);

Управление разведки средств связи (Communications Systems Acquisition &Operations Directorate).

Управление визуальной разведки (IM1NT Systems Acquisition & Operations Directorate).

Управление передовых систем и технологий (Advanced Systems & Technology Отдел по управлению и эксплуатации (Management Services and Operations).

Вспомогательные подразделения:

Отдел контрактов;

Отдел контрразведки;

Исторический отдел;

Отдел протокола;

Отдел безопасности;

Отдел средств внутренней связи;

Отдел запусков космических аппаратов.

Факт существования НУВКР перестал быть государственной тайной США только в году. В 1995 году была рассекречена программа CORONA (1960–1972 гг., фоторазведка), и 800000 фотоснимков, полученных за годы существования этой программы, были переданы в Управление национальных архивов и документов (NARA – National Archives and Records Administration).

2.5.6 ФБР (FBI).

ФБР – это основная спецслужба США в области контрразведки, расследующая дела о нарушениях законодательства в области разведки гражданами США, а также сотрудниками и агентами иностранных разведок. ФБР также является централизованной полицейской структурой, имеющей дело с уголовными преступлениями, подпадающими под юрисдикцию сразу нескольких штатов.

ФБР входит в состав PC, но не в качестве разведывательной организации. а как ведущая служба в области контрразведки, борющаяся со шпионажем на территории США. Этот круг обязанностей ФБР четко очерчен на законодательном уровне. Несмотря на роль ведущей контрразведывательной службы, нельзя сказать, что ФБР полностью монополизировала в стране борьбу с иностранным шпионажем. Кроме того, в каждый конкретный период времени непосредственно контрразведывательной деятельностью занимается лишь малая часть десятитысячной армии сотрудников ФБР. В бюро широко распространена практика ротации кадров (когда сотрудник последовательно проходит через различные отделы и управления, в результате становится универсалом).

Структура ФБР после реорганизации имеет вид представленный на рисунке 2.6:

ФБР и ЦРУ – две самые известные спецслужбы США (хотя в действительности, они далеко не так могущественны, как, скажем, РУМО или АНБ).

Однако между ФБР и ЦРУ существует два главных отличия.

Во-первых, агенты ФБР считаются сотрудниками правоохранительных органов наделены правом производить задержания и аресты. У сотрудников ЦРУ этих полномочий нет.

Во-вторых, ФБР работает только на территории Соединенных Штатов, ЦРУ же по всему миру, кроме США. Причем запрет проводить операции ЦРУ на территории США строго соблюдается, тогда как ФБР разрешено работать в американских посольствах за рубежом расследовать дела в рамках международных договоренностей правоохрани тельными структурами иностранных держав (по американский законам, ФБР имеет право арестовывать подозреваемых за рубежом и доставлять их для суда на территорию Соединенных Штатов).

После событий 11 сентября 2001 года в ФБР началась серьезная реорганизация, цель которой – поставить контрразведывательные функции на качественно новый уровень.

В ходе реорганизации в структуре ФБР появились ответственные помощники директора (Executive Assistant Director) no основным направлениям работы бюро. Это позволило повысить эффективность руководства подразделениями, входящими в каждое из направлений, и повысить скорость принятия решений по оперативным вопросам.

Помимо руководителей, в структуре ФБР появились два новых управления, необходимость создания которых обосновывается бурным ростом компьютерной преступности.

Управление компьютерных преступлений (Cybercrime Division) призвано заниматься собственно компьютерной преступностью, преступлениями в сфере высоких технологий, а также преступлениями, направленными против интеллектуальной собственности.

Управление внутренней безопасности (Security Division) призвано обеспечить безопасность сотрудников, подрядчиков и посетителей ФБР, а также информационных систем и помещений.

В структуре ФБР также появились четыре новых отдела: отдел координации деятельности правоохранительных органов (Law Enforcement Coordination), на который возлагается задача улучшения координации с правоохранительными органами всех уровней и обеспечение обмена информацией между ними и ФБР; отдел Главного офицера по технологиям (Chief Technology Officer), отвечающего перед руководством ФБР за реализацию важных проектов по внедрению информационных технологий; служба управления делами (Office of Records Management), в функции которой входит модернизация методов управления ФБР, включая управление процессами, Разведывательный отдел, призванный улучшить аналитическую и разведывательную работу, особенно в таких областях, как борьба с терроризмом и контрразведка.

Рис. 2.6. Структура ФБР США.

3. ОПТИЧЕСКАЯ РАЗВЕДКА.

3.3. Оптические каналы утечки информации.

Структура оптического канала утечки информации имеет вид, показанный рис. 3.1. Объект наблюдения в оптическом канале утечки информации является одновременно источником информации и источником сигнала, потому что световые лучи, несущие информацию о видовых признаках объекта, представляют собой отраженные объектом лучи внешнего источника или его собственные излучения.

сигнала) Рис. 3.1. Структура оптического канала утечки информации.

Отраженный от объекта свет содержит информацию о его внешнем виде (видовых признаках), а излучаемый объектом свет – о параметрах излучений (признаках сигналов). Запись информации производится в момент отражения падающего света путем изменения его яркости и спектрального состава. Излучаемый свет содержит информацию об уровне и спектральном составе источников видимого света, а в инфракрасном диапазоне по характеристикам излучений можно также судить о температуре элементов излучения.

В общем случае объект наблюдения излучает и отражает свет другого истоточника как в видимом, так и ИК-диапазонах. Однако в конкретных условиях соотношения между мощностью собственных и отраженных излучений в видимом и ИК-диапазонах могут существенно отличаться.

В видимом диапазоне мощность излучения определяется в подавляющем большинстве случаев мощностью отраженного света и содержащихся в спектре искусственных источников света. Например, габариты автомобиля в ночное время обозначаются включенными фонарями красного цвета, укрепленными по краям автомобиля. Объект наблюдения или его элементы излучают собственные электромагнитные излучения в видимом диапазоне при высокой температуре. В ближней (0.76–3 мкм) и средней (3–6 мкм) диапазонах ИК-излучения объектов значительно меньше мощности отраженного от объекта потока солнечной энергии. Однако с переходом в длинноволновую область ИК-излучения мощность теплового излучения объектов может превышать мощность отраженной солнечной энергии.

Основным и наиболее мощным внешним источником света является Солнце. При температуре поверхности около 6000° Солнце излучает огромное количество энергии в достаточно широкой полосе – от ультрафиолетового до инфракрасного (0.17–4 мкм). Максимум солнечного излучения приходится на 0.47 мкм, в ультрафиолетовой части оно резко убывает, в инфкрасной – регистрируется в виде широкой и пологой кривой.

При прохождении через атмосферу солнечные лучи взаимодействуют с содержащими в ней молекулами газов, частицами пыли, дыма, кристалликами льда, каплями воды. В результате такого взаимодействия часть солнечной энергии поглощается, другая – рассеивается [12].

Процессы рассеяния и поглощения солнечной энергии уменьшают интенсивность солнечной радиации на поверхности Земли и меняют спектр солнечного света, освещающего наземные объекты. В кривой излучения этого света, характеризующей интенсивность излучения в зависимости от длины волны, появляются участки поглощения и пропускания. Последние называются окнами прозрачности. Излучения длиной менее 0.27 мкм полностью поглощаются озоном. Атмосферное рассеяние света уменьшает прямую солнечную радиацию и повышает рассеянное (диффузное) излучение атмосферы. Рассеяние в коротковолновой части спектра сильнее, чем в длинноволновой. Особенно заметно оно в голубой и ультрафиолетовой областях, Поэтому небо имеет голубой цвет. Интенсивность рассеяния солнечного света в ближнем инфракрасном диапазоне незначительная.

Задымленность приповерхностного слоя атмосферы мало влияет на излучения в ближнем ИК-диапазоне, если размеры твердых частиц дыма в атмосфере не превышают 1 мкм. Туман и облака очень сильно рассеивают ИК-излучение в этом интервале длин, так как водяные капли имеют размер около 4 мкм. Молекулярное и аэрозольное рассеяние солнечного света вызывает ее свечение в атмосфере, которое называют дымкой. Рассеянное излучение создает освещенность теневых участков земной поверхности, увеличивая их относительную яркость.

Облачность существенно влияет на суммарную освещенность. Наличие облачности высоких ярусов, не закрывающих солнечный диск, повышает рассеянное излучение и при сохранении значения прямой освещенности увеличивает ее суммарную величину на (20–30)% по сравнению с освещенностью при безоблачном небе. Низкая облачность так же, как и тени облаков, снижают суммарную освещенность в 2–5 раз, в зависимости от высоты Солнца. При снежном покрове и облачности многократное отражение ими излучения повышает суммарную освещенность, особенно в теневых участках.

Освещенность в дневное время земной поверхности Солнцем составляет в зависимости от его высоты, облачности атмосферы 104–105 лк; С движением Солнца к горизонту Земли, когда зенитное расстояние между ними достигает максимума, освещенность, создаваемая Солнцем, составляет приблизительно 10 лк. При этом изменяется и спектр солнечного света, так как при прохождении толщи атмосферы синие и фиолетовые лучи ослабляются сильнее, чем оранжевые и красные, вследствие чего максимум излучения Солнца смещается в красную область цвета. С заходом Солнца за горизонт и наступлением сумерек освещенность убывает вплоть до наступления астрономических сумерек, за которыми следует наиболее темное время суток – ночь.

Освещенность в лунную ночь при безоблачном небе, когда так называемую естественную ночную освещенность (ЕНО) создает отраженный от Луны солнечный свет, составляет около 0.3 лк. Величина ЕНО, создаваемая светом Луны, в течение месяца меняется приблизительно в 100 раз в зависимости от взаимного положения Луны, Солнца и Земли. Лунный месяц разделяется по уровню освещенности на четыре части, каждая длительностью около недели.

Источниками излучения в безлунную ночь при безоблачном небе, называемым звездным светом, являются солнечный свет, отраженный от планет: туманностей, свет звезд, а также свечение кислорода и азота в верхних слоях атмосферы на высоте 100–300 км. Освещенность поверхности Земли звездным светом составляет в среднем 0.001 лк [13].

В инфракрасном диапазоне мощность излучения объекта зависит от температуры тела или его элементов, мощности падающего на объект света коэффициента отражения объекта в этом диапазоне. Коэффициент теплового излучения для реальных объектов не постоянен по спектру и определяется соответствии с законом Кирхгофа отношением спектральной плотное энергетической яркости объекта к спектральной плотности энергетически яркости абсолютно черного тела, которое обладает максимумом энергии теплового излучения по сравнению со всеми другими источниками при той температуре.

Средняя температура поверхности Земли близка к 17 градусов по Цельсию. Максимум ее теплового излучения приходится на 9.7 мкм. Объекты под действием солнечной радиации в течение дня по-разному отдают накопленное тепло в окружающее пространство. Различия в температуре излучении могут рассматриваться как демаскирующие признаки.

Объекты могут иметь собственные источники тепловой энергии, например, высокотемпературные элементы машин, дизель-электростанции и др., температура которых значительно выше температуры фона. Максимум теплового излучения таких объектов смещается в коротковолновую область, что служит демаскирующим признаком для таких объектов.

Длина (протяженность) канала утечки зависит от мощности света, от объекта, свойств среды распространения и чувствительности фотоприемника. Среда распространения в оптическом канале утечки информации возможна трех видов:

безвоздушное (космическое) пространство;

атмосфера;

оптические световоды.

Оптический канал утечки информации, среда распространения которого содержит участки безвоздушного пространства, возникает при наблюдении за наземными объектами с космических аппаратов. Граница между космическим пространством и атмосферой достаточно условна. На высотах 200–300 км существуют еще остатки газов, проявляющиеся в тормозящем действии на космические аппараты.

Сложный состав атмосферы определяет ее пропускную способность различных составляющих света. В общем случае прозрачность атмосферы зависит от соотношения длины проходящего сквозь нее света и размеров взвешенных в атмосфере частиц. Если размеры частиц соизмеримы с длиной волны света (больше половины длины волны), то пропускание значительноухудшается. Уровень пропускания меняется в зависимости от длины световой волны.

В видимой области прохождению света препятствуют абсорбирующие молекулы кислорода и воды. Коэффициент пропускания в ней немногим более 60%. В ближней ИК-области пропускание несколько большее – до 70%. Адсорбентом в этой области являются пары воды. В средней ИК-области, в диапазоне 3–4 мкм, пропускание достигает почти 90%. Высокое пропускание имеет довольно обширный участок в дальней ИК-области (с 8 до 13 мкм). Абсорбентом в нем являются молекулы кислорода и воды, а также углекислого газа и озона в атмосфере.

Метеорологическая видимость даже в окнах прозрачности зависит от наличия в атмосфере взвешенных частиц пыли и влаги, образующих мглу и туман, капелек и кристаллов воды в виде дождя и снега, а также аэрозолей и дымов, содержащих твердые частицы. Все это вызывает замутнение атмосферы и ухудшает видимость. Призрачность атмосферы как канала распространения света оценивается метеорологической дальностью видимости. Под последней понимается предельно большое расстояние, начиная с которого при данной прозрачности атмосферы в светлое время суток абсолютно черный предмет с угловыми размерами 20'х20' сливается с фоном у горизонта и становится невидимым. В зависимости от состояния атмосферы дальность видимости, определяющая протяженность оптического канала утечки, имеет значения, приведенные в табл. 3.1 [12].

Показатели метеорологической дальности атмосферы в конкретном районе регулярно определяются на станциях метеорологической службы и в метрах или в баллах передаются радиостанциями пользователям этой и: формации, в том числе для водителей автотранспорта.

Если объект наблюдения и наблюдатель находятся на земле, то протяженность канала утечки зависит не только от состояния атмосферы, но и ог раничивается влиянием кривизны Земли. Дальность прямой видимости D, км с учетом кривизны Земли можно рассчитать по формуле [14]:

Таблица 3.1. Дальность видимости, определяющей протяженность оптического канала утечки.

Метеорологическая Оценка Визуальная оценка замутненнодальность видимо- видимости, сти атмосферы и видимости где hо – высота размещения объекта над поверхностью земли в м, hн – высота расположения наблюдателя над поверхностью земли в м.

Пример. Пусть hо = 3 м и hн = 5 м, тогда получим Dnв = 14 км, что меньше метеорологической дальности при хорошей видимости. Эта формула не учитывает неровности Земли и различные инженерные сооружения (башни, высотные здания и т. д.), создающие препятствия для света.

Так как параметры источников сигналов и среды распространения зависят от значений спектральных характеристик носителя информации, то протяженность оптического канала утечки ее в видимом и ИК-диапазонах могут существенно отличаться.

Однако в общем случае потенциальные оптические каналы утечки информации имеют достаточно устойчивые признаки. Типовые варианты оптических каналов утечки информации приведены в табл. 3.2.

До недавнего времени атмосфера и безвоздушное пространство были единственной средой распространения световых волн. С разработкой волоконно-оптической технологии появились направляющие линии связи в оптическом диапазоне, которые в силу больших их преимуществ по отношению к традиционным электрическим проводникам рассматриваются как более совершенная физическая среда для передачи больших объемов информации. Линии связи, использующие оптическое волокно, устойчивы к внешним помехам, имеют малое затухание, долговечны, обеспечивают значительно большую безопасность передаваемой по волокну информации.

Волокно представляет собой нить диаметром около 100 мкм, изготовленную из кварца Таблица 3.2. Типовые варианты оптических каналов утечки информации Объект наблюдения Среда распространения Оптический приемник Документ, продукция в по- Воздух Глаза человека + бинокль, фотоаппарат шине, ж/платформе Атмосфера + безвоздушное Фото, ИК, на основе двуокиси кремния [15]. Волокно состоит из сердцевины (световодной жилы) и оболочки с разными показателями преломления. Волокно с постоянным показателем преломления сердцевины называется ступенчатым, с изменяющимся – градиентным. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое.

В одномодовом волокне световодная жила имеет диаметр порядка 8–10 мкм, по которой может распространяться один луч (одна мода). В многомодовом волокне диаметр световодной жилы составляет 50–60 мкм, что делает возможным распространение в нем большого числа лучей.

Волокно характеризуется двумя основными параметрами: затуханием и дисперсией. Затухание измеряется в децибелах на километр (дБ/км) и определяется потерями на поглощение и рассеяние света в оптическом волокне. Потери на поглощение зависят от чистоты материала, а потери на рассеяние – от неоднородности показателя преломления. Лучшие образцы волокна имеют затухание порядка 0.15–0.2 дБ/км, разрабатываются еще более «прозрачные» волокна с теоретическими значениями затухания порядка 0.02 дБ/км для волны длиной 2.5 мкм. При таком затухании сигнала могут передаваться на расстояние в сотни км без ретрансляции (регенерации).

Дисперсия обусловлена различием фазовых скоростей отдельных мод оптического сигнала, направляющими свойствами волокна и свойствами его материала. Она приводит к искажению (расширению) формы сигнала при его распространении в волокне, что ограничивает дальность передачи и верхнее значение частоты спектра сигнала. Дисперсия волокна оценивается величиной увеличения на км длины временного параметра оптического сигнала или эквивалентной полосой частот пропускания.

Волокна объединяют в волоконно-оптические кабели, покрытые защитной оболочкой.

По условиям эксплуатации кабели подразделяются на монтажные, станционные, зоновые и магистральные. Кабели первых двух типов используются внутри зданий и сооружений. Зоновые и магистральные кабели прокладываются в колодцах кабельных коммуникаций, в грунтах, на опорах, под водой.

Постоянные соединения отрезков оптических волокон между собой осуществляют свариванием, сплавлением или склеиванием в юстировочном устройстве. Оптические разъемы (соединители) должны допускать многократные соединения–разъединения оптических волокон.

Рассогласование волокон возникает из-за имеющихся различий в числовой апертуре, профиле показателя преломления, диаметре сердцевины или из-за погрешностей во взаимной ориентации волокон при их соединении. Основными причинами излучения световой энергии в окружающее пространство в местах соединения оптических волокон являются [16]:

смещение (осевое несовмещение) стыкуемых волокон (рис. 3.2а);

наличие зазора между торцами стыкуемых волокон (рис. 3.2б);

непараллельность торцевых поверхностей стыкуемых волокон (рис. 3.2в);

угловое рассогласование осей стыкуемых волокон (рис. 3.2г);

различие в диаметрах стыкуемых волокон (рис. 3.2д).

Исследования показывают [16], что наиболее интенсивное излучение в окружающее пространство наблюдается при наличии сдвига соединяемых волокон относительно друг друга.

Еще одна причина утечки информации в волоконно-оптических линиях может быть связана с возможным воздействием внешнего акустического поля (поля опасного сигнала) на волоконнооптический кабель. Звуковое давление акустической волны может вызвать изменение геометрических размеров (толщины) или смещение соединяемых концов световодов в разъемном устройстве относительно друг друга. Вследствие этого может осуществляться амплитудная модуляция опасным сигналом излучения, проходящего по волокну. Глубина модуляции определяется силой звукового давления, конструкцией и свойствами волокна [17]. Для съема информации разрушают защитную оболочку кабеля, прижимают фотодетектор приемника к очищенной площадке волокна и изгибают кабель на угол, при котором часть световой энергии направляется на фотодетектор приемника.

Съем информации может быть осуществлен при принудительном (внешнем) изменении соотношения между показателями преломления сердцевины и оболочки за счет линейного электрооптического, фотоупругого и квадратичного электрооптического эффектов [18].

Рис. 3.2. Основные причины излучения из мест соединения световолокна в окружающее пространство.

3.4. Принципы оптической разведки В оптическом (видимом и инфракрасном) диапазоне информация разведкой добывается путем визуального, визуально-оптического, фото- и киносъемки, телевизионного наблюдения, наблюдения с использованием приборов ночного видения и тепловизоров.

Наибольшее количество признаков добывается в видимом диапазоне. Видимый свет как носитель информации характеризуется следующими свойствами:

наблюдение возможно, как правило, днем или при наличии мощного внешнего источника света;

сильная зависимость условий наблюдения от состояния атмосферы, климатических и погодных условий:

малая проникающая способность световых лучей в видимом диапазоне, что облегчает задачу защиты информации о видовых признаках объекта;

ИК-лучи как носители информации обладают большей проникающей способностью, позволяют наблюдать объекты при малой освещенности. Но при их преобразовании в видимый свет для обеспечения возможности наблюдения объекта человеком происходит значительная потеря информации об объекте.

Эффективность обнаружения и распознавания объектов наблюдения зависит от следующих факторов [13]:

яркости объекта;

контраста объект/фон;

угловых размеров объекта;

угловых размеров поля обзора;

времени наблюдения объекта;

скорости движения объекта.

Яркость объекта на входе приемника определяет мощность носителя, превышение которой над мощностью помех является необходимым условием обнаружения и распознавания объекта наблюдения. Современные приемники имеют чувствительность, соответствующую энергии нескольких фотонов.

Контрастность объекта с окружающим фоном является необходимым условием выделения демаскирующих признаков объекта и его распознавания. Контраст К определяют как отношение разности яркости объекта и фона к яркости объекта или фона:

где Во и Вф – яркость объекта и фона соответственно.

Контраст, определяемый по этой формуле, называется визуальным. В видимом и ближнем диапазонах световых волн контраст на входе оптической системы средства добывания несколько снижается за счет яркости дымки, которую можно рассматривать как помеху. В дальних зонах инфракрасного излучения яркость дымки не оказывает существенного влияния на изменение контраста.

Значения контраста колеблется в довольно широких пределах. При К = 0.08–0.1 объект почти сливается с фоном и плохо различается на фоне.

При поиске объекта его форма не играет большой роли, а имеет значение только его площадь в пределах соотношения сторон от 1:1 до 1:10.

Увеличение угловых размеров объекта в 2 раза сокращает время, необходимое для его обнаружения, в 8 раз.

Время для обнаружения объектов светлее и темнее фона при одинаковых абсолютных значениях контраста примерно одинаковое. С увеличением яркости фона время поиска объекта наблюдателем уменьшается, так как увеличивается разрешающая способность и контрастная чувствительность глаза. Если яркость фона чрезмерно велика, то возникает дискомфорт и ослепление, ухудшающие разрешение и контрастную чувствительность глаза.

С увеличением поля обзора увеличивается и время, необходимое для поиска объекта:

двукратное увеличение поля обзора повышает время поиска в 4 раза, при этом время поиска определяется не формой поля, а его угловой площадью.

Поиск движущихся объектов имеет свои особенности: движение ухудшает видимый контраст объекта, величина которого зависит не только от угловой скорости, но и от угловой размеров объекта наблюдения. Чем меньше угловой размер объекта, тем больше влияние скорости на время и вероятность обнаружения объекта. Объекты, движущиеся с малой скоростью, обнаруживаются легче, чем неподвижные, а движущиеся с большой скоростью –труднее из-за ухудшения видимого контраста.

Так как физическая природа носителя информации в оптическом диапазоне одинакова, то различные средства наблюдения, применяемые для добывания информации в этом диапазоне, имеют достаточно общую структуру. Ее можно представить в виде, приведенной на рис. 3.3.

Рис. 3.3. Структурная схема средства наблюдения в оптическом диапазоне.

Большинство средств наблюдения содержит оптический приемник, включающий оптическую систему, светоэлектрический преобразователь, усилитель и индикатор.

Оптическая система или объектив проецирует световой поток от объекта наблюдения на экран светоэлектрического преобразователя (сетчатку глаза, фотопленку, фотокатод, мишень оптико-электронного преобразователя). На мишени оптическое изображение преобразуется в электронное изображение, количество «свободных» электронов каждой точки которого пропорционально яркости соответствующей точки оптического изображения. Способы визуализации изображения для разных типов оптического приемника могут существенно отличаться. Изображение в виде зрительного образа формируется в мозгу человека, на фотопленке – в результате химической обработки светочувствительного слоя, на экране технического средства – путем параллельного или последовательного съема электронов с мишени, усиления электрических сигналов и формирования под их действием видимого изображения на экране с люминофором.

3.5. Технические характеристики средств оптической разведки 3.5.1 Общие характеристики Характеристики средств наблюдения определяются, прежде всего, параметрами оптической системы и светоэлектрического преобразователя, а также они зависят от способов обработки электрических сигналов и формирования изображения при индикации. Основными из них являются:

диапазон длин волн световых лучей, воспринимаемых светоэлектрическим преобразователем;

чувствительность материала экрана светоэлектрического преобразователя;

разрешающая способность, в основном пары «оптическая система –преобразователь света»;

поле (угол) зрения и изображения.

Средства наблюдения в зависимости от назначения создаются для видимого диапазона в целом или его отдельных зон, а также для различных участков инфракрасного диапазона.

Чувствительность средства наблюдения оценивается минимальным уровнем энергии светового луча, при котором обеспечивается требуемое качество изображения объекта наблюдения. Качество изображения зависит как от яркости и контрастности проецируемого изображения, так и от помех. Помехи создают лучи света, попадающие на вход от других источников света, и шумы светоэлектрического преобразователя. На экране светоэлектрического преобразователя при посторонней внешней засветке наблюдается ухудшение контраста изображение аналогичное варианту прямого попадания на экран телевизионного приемника яркого солнечного света.

Разрешающая способность характеризуется минимальными линейными или угловыми размерами между двумя соседними точками изображения, которые наблюдаются как отдельные. Так как изображение формируется из точек, размеры которых определяются разрешающей способностью средства наблюдения, то вероятность обнаружения и распознавания объекта возрастает с повышением разрешающей способности средства наблюдения (увеличением количества точек изображения объекта).

Поле зрения это то, что проецируется на экран оптического приемника. Угол, под которым средство «видит» предметное пространство, называется углом поля зрения. Часть поля зрения, удовлетворяющего требованиям к качеству изображения по его резкости, называется полем или соответственно углом поля изображения.

3.5.2 Характеристики человеческого глаза Наиболее совершенным средством наблюдения в видимом диапазоне является зрительная система человека, включающая глаза и области мозга, осуществляющие обработку сигналов, поступающих с сетчатки глаз.

Возможности зрения человека характеризуются следующими показателями:

глаз воспринимает световые лучи в диапазоне 0.4–0.76 мкм, причем максимум его спектральной чувствительности в светлое время суток приходится на голубой цвет (0. мкм), в темноте – на зеленый (0.55 мкм);

порог угловых размеров, которые глаз различает как две раздельные точки на объекте наблюдения, составляют днем – 0.5–1 угл. мин., ночью–30 угл. мин.;

порог контрастности различимого объекта по отношению к фону составляет днем – 0.01–0.03, ночью – 0.6;

диапазон освещенности объектов наблюдения, к которым адаптируется глаз, чрезвычайно широк – 60–70 дБ;

при освещенности менее 0.1 лк (в безоблачную лунную ночь) глаз перестает различать Уникальные возможности глаз человека достигаются благодаря совершенству, в том числе, его оптической системы–хрусталика, выполняющей функции объектива. Совершенство хрусталика проявляется, прежде всего, тем, что его кривизна с помощью специальных глазных мышц изменяется таким образом, чтобы обеспечить на сетчатке глаза максимально четкое изображение объектов, расположенных на различных расстояниях от наблюдателя. Хотя ведутся исследования по созданию подобных искусственных объективов, но приблизиться к возможностям хрусталика глаза пока не удается.

3.5.3 Характеристики объективов Объективы в силу постоянства кривизны поверхностей линз и оптической плотности стекла проецируют изображения с различного рода погрешностями. Наиболее заметны из них:

сферическая аберрация, проявляющаяся в отсутствии резкости изображения на всем поле зрения (оно резко в центре или по краям);

астигматизм – отсутствие одновременной резкости на краях поля изображения для вертикальных и горизонтальных линий;

дисторсия – искривление прямых линий;

хроматическая аберрация – появление цветных окантовок на границах световых переходов, вызванных различными коэффициентами преломления линз объектива спектральных составляющих световых лучей.

С целью уменьшения погрешностей объективы выполняются из большое го (до 10 и более) количества линз с различной кривизной поверхностей. Все или отдельные группы линз склеиваются между собой.

Качество объективов описываются совокупностью параметров. Для оценки возможностей средств наблюдения основными из них являются: фокусное расстояние, угол поля зрения и изображения, светосила, разрешение, частотно-контрастная характеристика.

По величине фокусного расстояния объективы делятся на короткофокусные, с фокусным расстоянием f, меньшим длины диагонали кадра поля изображения d, нормальные или среднефокусные (f = d), длиннофокусные и телеобъективы с f d, а также с переменным фокусным расстоянием.

Объектив с переменным фокусным расстоянием (панкратический) представляет собой сложную оптическую систему, в которой предусмотрена возможность смещения оптических компонентов, за счет чего изменяется величина фокусного расстояния. Величину фокусного расстояния изменяют дискретно или плавно [19].

Дискретное изменение фокусного расстояния достигается применение афокальных насадок, уменьшающих или увеличивающих фокусное расстояние. Плавное изменение величины фокусного расстояния осуществляете перемещением отдельных компонент вдоль оптической оси по линейном или нелинейному закону. В зависимости от способа коррекции аберрации эти объективы подразделяют на вариообъективы и трансфокаторы.

Вариообъективы представляют собой единую оптическую схему, в которой изменение фокусного расстояния осуществляется непрерывным перемещением одного или нескольких компонентов вдоль оптической оси.

Трансфокаторы состоят из афокальной насадки с переменным, плавным увеличением и объектива с постоянным фокусным расстоянием.

Сложность оптической конструкции объективов с переменным фокусным расстоянием вызвана, прежде всего, тем, что при изменении фокусного расстояния должно автоматически сохраняться положение плоскости резкого изображения наблюдаемого объекта. Добиваются этого путем оптической компенсации (при линейном перемещении компонентов) и механической (при нелинейном). В первом случае кратность изменения фокусного расстояния не более 3, во втором – 6–7.

По углу поля зрения (изображения) различают узкоугольные объективы, у которых величина угла не превышает 30°, среднеугольные (угол в пределах 30°–60°), широкоугольные с углом более 60° и, наконец, – с переменным углом поля изображения у объективов с переменным фокусным расстоянием.

Чем больше фокусное расстояние f объектива, тем больше деталей объекта можно рассмотреть на его изображении, но тем меньше угол поля зрения. Поэтому для обнаружения объекта используют короткофокусные объективы, а для распознавания – длиннофокусные. Размеры объекта h на изображении определяются по соотношению h = fH/L в зависимости от размеров реального объекта Н, расстояния от него до объектива L и фокусного расстояния объектива Светосила характеризует способность объектива создавать освещенность в поле изображения в соответствии с яркостью объекта. На светосилу объектива влияют следующие факторы:

относительное отверстие объектива;

прозрачность (коэффициенты пропускания, поглощения, отражения) линз;

коэффициент увеличения (масштаб получаемого изображения);

коэффициент падения освещенности к краю поля изображения.

Светосила без учета реальных потерь света в линзах оценивается величиной геометрического относительного отверстия l:к = 1:f/D, где D – диаметр входного отверстия объектива (апертура) или фокальным числом F = f/D. Эффективное относительное отверстие объектива меньше геометрического на величину потерь света в его линзах. По величине относительного отверстия объективы делятся на сверхсветосильные, у которых 1:к = 1:2 и менее, светосильные (1:к = 1:2.8–1:4) и малосветосильные с 1:к = 1:5.6 и более [19]. Чем больше светосила объектива, тем выше чувствительность средства наблюдения. Однако при этом растут искажения изображения и для их уменьшения усложняют конструкцию светосильных объективов, что естественно приводит к их удорожанию.

Свет, падающий на линзу и проходящий через нее, отражается и поглощается. Количество поглощенного света зависит от толщины стекла (в среднем 1–2% на 1 см толщины). Линзы отражают 4–6% падающего на них свет. Чем больше отражающих поверхностей имеет объектив, тем больше потери света. В объективах из 5–7 линз потери света на отражение могут составлять 40–50% [19]. Уменьшают потери света просветлением линз.

Просветлением называются способы уменьшения отражения света от поверхности стекла путем нанесения на него тонкой пленки с коэффициентом преломления, меньшим преломления стекла линзы. Толщина просветляющей пленки должна составлять 1/4 длины волны падающего на линзу света. В этом случае отраженные лучи света в силу противоположности их фаз фазам падающих лучей компенсируются и, следовательно, отражение света отсутствует.

Первоначально объективы просветляли для желто-зеленой части спектра, к которой наиболее чувствителен глаз человека. Просветленный объектив в отраженном свете приобретал синефиолетовый опенок и назывался «голубой» оптикой. Современные технологии просветления оптики позволяют наносить на поверхность линзы 12-14 слоев просветляющих пленок и перекрывать тем самым весь спектр видимого диапазона света. Такую оптику маркируют индексами МС - многослойное покрытие. Объективы МС в отраженном свете не меняют цвет.

Возможность объектива передавать мелкие детали изображения оценивается разрешающей способностью. Она выражается максимальным числом N штрихов и промежутков между ними на 1 мм поля изображения в его центре и по краям. Наиболее высокую разрешающую способность имеют объективы для микрофотографирования в микроэлектронике. Она достигает 280– 440 линий на мм по центру и 260–400 линий на мм по краям поля изображения.

Так как одним из основных факторов, определяющих вероятность обнаружения и распознавания объектов, является контрастность его изображения по отношению к фону, то важной характеристикой объектива как элемента средства наблюдения является его частотно-контрастная характеристика. Она служит мерой способности объектива передавать контраст деталей объекта и измеряется отношением контрастности деталей определенных размеров на изображении и на объекте. Уменьшение контраста мелких деталей на изображении вызвано тем, что в результате различных аберраций объектива на изображении размываются границы деталей наблюдаемых объектов.

Для количественной оценки частотно-контрастной характеристики в качестве исходного объекта используется эталонный объект наблюдения – мира в виде черно-белых линий с уменьшающейся шириной, нанесенных, например, тушью на белой бумаге. По результатам измерений контрастности n линий на проецируемом объективом изображении строится зависимость контраста К от количества линий n в одном мм. Зависимость K = f(n) определяет частотно-контрастную характеристику объектива.

В связи с большими техническими проблемами создания универсальных объективов с высокими значениями показателей, оптическая промышленность выпускает широкий набор специализированных объективов: для фото и киносъемки, портретные, проекционные, для микрофотографирования и т. д.

Для добывания информации применяются объективы трех видов: для аэрофотосъемки, широкого применения (фото, кино и видеосъемки с использованием бытовых и профессиональных камер) и для скрытой съемки.

Объективы широкого применения разделяются в соответствии с размерами фотоаппаратов: для малоформатных и миниатюрных, среднеформатных и крупноформатных камер.

Для скрытого наблюдения используются:

телеобъективы с большим фокусным расстоянием (300–4800 мм) дл фотографирования на большом удалении от объекта наблюдения, на|пример, из окна противоположного дома и далее так называемые точечные объективы для фотографирования из портфеля, часов, зажигалки, через щели и отверстия. Они имеют очень малые габариты и фокусное расстояние, но большой угол поля зрения. Например, объектив фотоаппарата РК 420, вмонтированного в корпус наручных часов, имеет размеры 7.5 мм с апертурой 2.8 мм. В миникамерах фирм Hitachi, Sony, Philips. Ockar используются объективы диаметром 1– 3.5.4 Характеристики визуально-оптических приборов Для визуально-оптического наблюдения применяются оптические приборы, увеличивающие размеры изображения на сетчатке глаза. В результате этого повышается дальность наблюдения, вероятность обнаружения и распознавания мелких объектов. К визуальнооптическим приборам относятся бинокли, монокуляры, подзорные трубы, специальные телескопы. Для наблюдения за объектами наиболее распространены бинокли. Бинокль (от лат. birii –пара и oculus – глаз) – оптический прибор из двух параллельных соединенных между собой зрительных труб. В зависимости от оптической схемы зрительной трубы бинокли разделяются на обыкновенные (галилеевские) и призменные.

Зрительная труба призменного бинокля состоит из объектива, обращенного в сторону объекта наблюдения, системы призм, оборачивающей изображение, и окуляра – объектива, обращенного к зрачку глаза. В обыкновенном бинокле призмы отсутствуют, оптические оси объектива и окуляра трубы совпадают, расстояние между центрами объективов и центрами окуляров зрительных труб одинаково и равно 65 мм (среднее расстояние между зрачками глаз наблюдателя). Бинокли этого типа просты по устройству, обладают высокой светосилой, однако имеют малое поле зрения и не позволяют устанавливать углоизмерительную сетку. Наиболее распространены призменные бинокли. Они обладают сравнительно большим полем зрения и повышенной стереоскопичностью за счет увеличения расстояния между центрами объективов труб. В призменных биноклях устанавливают углоизмерительную сетку в фокальной плоскости окуляра. Зрительные трубы у призменных биноклей шарнирно закреплены на общей оси, что позволяет подбирать расстояние между окулярами по базе глаз наблюдателя (от 54 до 74 мм).

Объективы и призмы оборачивающей системы закреплены в зрительных трубах неподвижно, а окуляры могут выдвигаться для установки по силе зрения наблюдателя. Для этого на окулярных трубах наносятся диоптрийные шкалы.

Современные бинокли имеют большие коэффициенты (кратности) увеличения. Например, увеличение бинокля Б–15 равно 15, а угол поля зрения ~ 4 град. Бинокль «Марк–1610»

(США) имеет кратность увеличения 10 и 20 при угле зрения 5 и 2.5 град, соответственно.

При достаточно большом увеличении визуально-оптического прибора его угол зрения становится столь малым, что трудно из-за дрожания рук Удерживать изображение наблюдаемого объекта в поле зрения прибора. Для стабилизации изображения визуально-оптические приборы устанавливают на штативе или треноге. В более дорогих приборах применяют электронную стабилизацию изображения, обеспечивающую наблюдение с рук или с движущегося транспорта. Например, бинокль со стабилизацией изображения БС 16x40 имеет кратность увеличения 16, размеры 240x195x100 мм и вес не более 2.2 кг.

Чтобы улучшить наблюдение при тумане, ярком солнечном освещении или зимой на фоне снега, на окуляры бинокля надеваются желто-зеленые светофильтры. В некоторых биноклях для обнаружения активных инфракрасных приборов ночью применяют специальный экран, чувствительный к инфракрасным лучам.

В последнее время применяются так называемые панкратические бинокли, плавно изменяющиеся увеличение в значительных пределах (от 4 до 20 и более). При этом в обратно пропорциональной зависимости изменяется величина поля зрения. Такие бинокли наиболее удобны для наблюдения: позволяют производить поиск объектов при большом поле зрения, но малом увеличении, а изучение объекта – при большом увеличении. Например, панкратический бинокль фирмы Tasko (США) имеет увеличение 8–15, угол зрения 6.0–3.6 градусов и диаметр входного зрачка 5–2.3 мм. У панкратических зрительных труб увеличение может изменяться в еще больших пределах. Например, кратность увеличения зрительной трубы фирмы Swiff (Великобритания) составляет 6–30 при угле зрения 7.5–1.3 градусов.

Для скрытного наблюдения удаленных объектов применяют подзорные трубы и специальные телескопы, имеющие объективы с большим фокусным расстоянием. Например, телескоп РК 6500 при фокусном расстоянии 3900 мм и диаметре входной апертуры 350 мм позволяет опознать автомобиль на удалении до 10 км. Однако телескоп имеет сравнительно большие размеры 460x560x1120 мм, вес 54 кг и устанавливается на специальном штативе с электроприводом [20].

На базе волоконно-оптических световодов созданы разнообразные типы технических эндоскопов для наблюдения через малые отверстия диаметром 6–10 мм. Типовой технический эндоскоп состоит: из окулярной части, через которую проводится наблюдение, рабочей части в виде волоконно-оптического кабеля длиной 600–1500 мм, дистальной части, содержащей объектив и осветительного жгута для подсветки объекта наблюдения. Эндоскопы комплектуются сетевыми или аккумуляторными осветителями с источникам света – галогенными лампами мощностью 20–150 Вт. В эндоскопе обеспечивается возможность отклонения дистальной части на 180 градусов в вертикальной и горизонтальной плоскостях. Угол поля зрения объектива составляет 40–60°, фокусировка объектива обеспечивает наблюдение как вблизи (от 1 мм и далее), так и «в бесконечности» (на расстоянии более 5 м).

3.5.5 Характеристики фото- и киноаппаратов Визуально-оптическое наблюдение, использующее такой совершенный оптический прибор, как глаз, является одним из наиболее эффективных способов добывания, прежде всего, информации о видовых признаках. Однако оно не позволяет регистрировать изображение для последующего изучения или документирования результатов наблюдения. Для этих целей применяют фотографирование и киносъемку с помощью фото и киноаппаратов.

Фотографический аппарат представляет собой оптико-механический прибор для получения оптического изображения фотографируемого объекта на светочувствительном слое фотоматериала.

Все фотоаппараты состоят из светонепроницаемого корпуса с закрепленным на его передней стенке объективом, устройства для размещения или фиксации светочувствительного материала, расположенного у задней стенки корпуса, и затвора.

Так как светочувствительный материал обеспечивает получение качественной фотографии при строго дозированной световой энергии, проецируемой на светочувствительный материал, то затвор пропускает в течение определенного времени (времени экспозиции или выдержки) световой поток от фотографируемого объекта.

Указанные части фотоаппарата являются основными. По мере конструктивного развития фотоаппарат «обрастал» различными узлами и механизмами, которые облегчали и автоматизировали процесс съемки, позволяли расширить возможности применения фотоаппарата, улучшить его технические параметры. Эти узлы и механизмы называют вспомогательными. К ним относятся:

видоискатель для определения границ поля изображения;

дальномер для ручного или автоматического определения расстояния до объекта съемки;

фокусировочный механизм для совмещения фокальной плоскости объектива с плоскостью расположения светочувствительного материала;

механизм, транспортирующий фотопленку на один кадр и точной установки ее против кадрового окна фотоаппарата;

экспонометрический узел, предназначенный для определения экспозиционных параметров (выдержки и диафрагмы) в соответствии со светочувствительностью используемого фотоматериала и яркостью объекта.

Профессиональные фотоаппараты известных фирм (Nicon, Canon, Зенит, Kodak-, Olympus, Contax, Pentax и др.) представляют собой сложнейшие оптико-электромеханические устройства, автоматически учитывающие все изменения в освещенности объекта во время фотосъемки.


Размер используемого в них светочувствительных материалов положен в основу условного деления всех фотоаппаратов на несколько групп. По этому признаку (по размерам получаемых негативов) выделяют пять групп: микроформатные, полуформатные, мало, средне и крупноформатные. Фотоаппараты применяют различные типы светочувствительных материалов: фотопластинки, плоские и рулонные фотопленки.

Другим важным признаком классификации является назначение фотоаппарата. По этому признаку они делятся на общие и специальные.

От способов обеспечения резкого изображения на светочувствительном материале (наводки на резкость) зависит конструктивное решение почти всего фотоаппарата. По этому признаку фотоаппараты можно разделить на следующие группы [19]:

с наводкой на резкость по изображению на экране фотоаппарата (у так называемых зеркальных или SLR-фотоаппаратов);

с наводкой по монокулярному дальномерному устройству, механически связанному с объективом фотоаппарата;

с неподвижным жестко встроенным объективом, сфокусированным на гиперфокальное автофокусирующие (с устройством автоматической фокусировки).

По технической оснащенности фотоаппараты можно разделить на следующие классы:

простой, средний, высокий.

По показателям оснащенности фотоаппарата c встроенными экспонометрами, а также по степени автоматизации установки экспозиционных параметров фотоаппараты делят на три группы: с ручной установкой, с полуавтоматической и с автоматической установкой экспозиции.

Повышение технической оснащенности расширяет возможности фотоаппаратов, но усложняет возможность их миниатюризации.

Микроформатные фотоаппараты имеют более простую конструкцию и заряжаются узкой пленкой шириной 8–16 мм. Одна из особенностей ряд» ранних микроформатных фотоаппаратов – горизонтальная компоновка аппарата с объективом, утопленным в корпусе. Корпус таких моделей состоит из двух частей, одна из которых подвижная. Перед съемкой фотоаппарат телескопически раздвигается, открывая объектив и видоискатель. Одновременно производится транспортирование пленки и взвод затвора. Таким образом выдвижная часть корпуса является одновременно защитным кожухом, рыча гом взвода и протяжки пленки для следующего кадра («Минокс», «Агфама тик–4008», «Киев–30»).

Другие модели имеют традиционную форму. Мировыми лидерам среди производителей таких фотоаппаратов являются АО «Красногорски завод» и немецкая фирма «Robot» [21].

Например, фотоаппарат «МФ–1» (Красногорский завод) представляет полуавтомат с пружинным приводом, имеет светосильный объектив с F2.8, размер кадра 18x24 мм. Конструкция фотоаппарата предполагает дистанционное управление, а пружинный привод дает возможность работать в любых климатических условиях. Недостаток – относительно большой шум при перемотке. Фотоаппарат «Robot–SC electronic» менее шумящий и при небольших габаритах работает с использованием стандартной пленки 35 мм. Параметры некоторых микроформатных фотоаппаратов приведены в табл. 3.3.

Для копирования документов наряду с мини- и микроформатными фотоаппаратами применяют специальные фотоаппараты. Например, копировальный фотоаппарат РК 320 состоит из Таблица 3.3. Параметры микроформатных фотоаппаратов РК 1570–SS (в зажигалке) 26x16x55 40 Негатив 8x11 мм зеркального аппарата, откидной стойки, источника освещения из двух ламп по 10 Вт, блока питания от батареи (8x1.5 В) и сети 220 В, а также из держателя документа. Устройство позволяет фотографировать документы размером А4–А6, размещается в портфеле–дипломате и весит 3. кг [20].

Следует отметить, что возможности добывания информации путем фотографирования определяются как параметрами фотоаппаратов, так характеристиками (спектральным диапазоном, чувствительностью, разрешающей способностью) светочувствительных материалов, на которые проецируется объективом изображение наблюдаемого объекта [5].

С начала 90–х годов на основе достижений микроэлектроники развивается принципиально новое направление – цифровое фотографирование. Цифровой фотоаппарат представляет собой малогабаритную камеру на ПЗС электрические сигналы с выхода которой записываются не на магнитную, ленту как в видеокамере, а преобразуются в цифровой вид и запоминаются, полупроводниковой памятью фотоаппарата или записываются на его малогабаритный диск.

Цифровой электронный фотоаппарат, обладая возможностями классического электромеханического фотоаппарата, предоставляет пользователю дополнительные функции, которые существенно повышают оперативность фотографии. К ним относятся: возможность съемки в непрерывном режиме с, частотой 5–15 кадров/с, запись текстовых и звуковых комментариев, даты и времени фотосъемки, просмотр изображений в процессе и после съемки на поворачивающемся экране (LCD-панели размером 4–5 см), отображение текущих параметров съемки (числа отснятых кадров, объем свободной памяти, текущий режим компрессии) и др. Предусмотрены различные режимы просмотра кадров и стирание непонравившихся, печатание выбранных на специальном принтере. Цифровой фотоаппарат может иметь стандартны интерфейс для просмотра изображения на экране телевизора, записи на видеомагнитофон или печати на видеопринтер.

Цифровой фотоаппарат также сопрягается с ПЭВМ. Отснятое изображение может отображаться на экране дисплея, редактироваться с помощью графических редакторов, выводиться на печать, передаваться по сети.

Разрешение изображения цифрового фотоаппарата определяется разрешением его светоэлектрического преобразователя. Но с увеличением разрешения уменьшается при ограниченном объеме памяти количество кадров. Компромисс между разрешением и количеством кадров достигается введением возможности изменения оператором показателей разрешения запоминаемого кадра. Если использовать карты памяти стандарта PCVIA, то количество кадров может быть значительно большим. Для дополнительной памяти объемом 16 Мб количество кадров пропорционально возрастает и составляет сотни снимков.

Изображение с разрешением 640x480 соответствует качеству изображения на экране монитора VGA ПЭВМ, но уступает возможностям фотопленок. Однако цифровое фотографирование не связано с химической обработкой светочувствительных материалов, что резко улучшает потребительские свойства цифровых фотоаппаратов, обладает большой оперативностью просмотра изображений и гибкостью редактирования изображения на ПЭВМ.

Учитывая перспективы миниатюризации радиоэлектронных элементов, прежде всего «памяти», и повышения разрешения ПЗС, у цифровых фотоаппаратов большое будущее. В таблице 3.4. представлены технические характеристики некоторых моделей цифровых фотоаппаратов.

Таблица 3.4. Характеристики цифровых фотоаппаратов.

Примечание. В столбцах 2 и 4 в числителе указаны максимальные значения, в знаметеле – минимальные 3.5.6 Технические характеристики средств телевизионной разведки Информация о движущихся объектах добывается путем кино- и видеосъемки с помощью киноаппаратов и видеокамер. При киносъемке изображение фиксируется на светочувствительной кинопленке, при видеозаписи – на магнитной пленке.

Под киносъемкой понимают процесс фиксации серии последовательных изображений (кадров) объекта наблюдения через заданные промежутки времени, определяемые частотой кадров в секунду. Каждый кадр кинофильма содержит изображение объекта в момент съемки.

Число кадров колеблется от единиц кадров в минуту и даже часов для съемки медленно текущих процессов до сотен тысяч в секунду – для сверхскоростной специальной съемки, например, для наблюдения электрического разряда или полета пули.

Устройство кинокамеры близко к устройству фотоаппарата с той принципиальной разницей, что в процессе киносъемки пленка скачкообразно продвигается с помощью грейферного механизма перед кинообъективом на один кадр. Закрытие объектива на время продвижения кинопленки осуществляется заслонкой (обтюратором), вращение которой перед объективом синхронизировано с работой грейфера. Киносъемка движущихся людей производится на 8 и 16-мм пленку с частотой 16–32 кадра в секунду.

Рис. 3.4. Схема комплекса средств телевизионного наблюдения.

Дистанционное наблюдение движущихся объектов осуществляется с помощью средств телевизионного наблюдения. Схема комплекса средств телевизионного наблюдения показана на рис. 3.4. при телевизионном наблюдении изображение объективом проецируется светочувствительный слой фотокатода вакуумной передающей трубки или мишени твердотельного преобразователя. Фотокатод содержит вещества, из атомов которого кванты световой энергии выбивают электроны, количество которых пропорционально энергии света (яркости элемента изображения). На фотокатоде образуется изображение Q(x,y,t) в виде электрических зарядов, эквивалентное оптическому B(x,y,t) изображению, где Q и В – значения соответственно величины зарядов и яркости в точках с координатами х, у в момент времени t.

В вакуумных телевизионных передающих трубках производится считывание величины заряда с помощью электронного луча трубки, отклоняемого по горизонтали и вертикали магнитными полями. Эти поля создаются отклоняющими катушками, надеваемыми на горловину телевизионной трубки.

При телевизионном наблюдении изображение объективом проецируется на светочувствительный слой фотокатода вакуумной передающей трубки.

За время развития телевидения разработано много типов передающих телевизионных трубок, отличающихся чувствительностью фотокатода и разрешающей способностью. Появление достаточно простых ТВ-трубок тип «видикон» позволило создать компактные телекамеры.

Миниатюрные видконы с диаметром до 15 мм обеспечивают четкость 400–600 линий. На оснве видикона разработаны различные варианты телевизионных передающих трубок: плюмбикон, кремникон, суперортикон, изокон и др., обеспечивающие качественное светоэлектрическое преобразование в широком диапазоне длин волн и освещенности.

В начале 70-х годов был открыт и реализован новый принцип построения безвакуумных, твердотельных преобразователей «свет–электрический сигнал», так называемых приборов с зарядовой связью (ПЗС). В основу таких прибор положены свойства структуры металл-окиселполупроводник, называема МОП-структурой (рис. 3.5).

Фотокатод или мишень ПЗС представляет линейку или матрицу из ячее с МОПструктурами, образованными горизонтальными и вертикальными токопроводящими прозрачными электродами. Размеры каждой ячейки соответствуют размерам элемента изображения.

Разрешающая способность П3С определяется количеством ячеек, размещающихся в поле изображения.

Считывание зарядов, образующихся в каждой ячейке ПЗС под действием света точек Рис. 3.5. Схема фрагмента ПЗС.

изображения, производится путем последовательного перекачивания зарядов с ячейки на ячейку под действием управляющих сигналов, подаваемых на электроды. В результате этого на выходе ПЗС образуется последовательность электрических сигналов, амплитуда которых соответствует величине заряда на ячейках мишени ПЗС.

Электрический сигнал с выхода вакуумной передающей трубки или ПЗС усиливается и передается по кабелю или в виде радиосигналов к телевизионному приемнику. Последний выполняет обратные функции, преобразуя электрический сигнал в изображение, яркость каждого элемента которого эквивалентна амплитуде соответствующего сигнала. Формирование изображения производится на экране приемной масочной вакуумной трубки (кинескопа) или экране плоских панелей.

В вакуумной приемной телевизионной трубке (кинескопе) изображение создается на ее экране с люминофором электронным лучом, модулируемым электрическим сигналом изображения и отклоняемым по горизонтали (строке) и вертикали (по кадру) синхронно с траекторией отклонения луча передающей трубки или считывания с ПЗС. Синхронность обеспечивается путем передачи синхронизирующих сигналов в виде групп импульсов, моменты формирования которых соответствуют границам строк и кадров. Синхроимпульсы совместно с сигналом изображения образуют полный телевизионный сигнал. В приемнике из полного телевизионного сигнала выделяются синхроимпульсы, которые синхронизируют работу устройств кадровой и строчной развертки. Эти устройства формируют сигналы, при прохождении которых по катушкам отклонения, надетых на горловину кинескопа, создаются магнитные поля, отклоняющие электронный луч.

Но вакуумные приемные телевизионные трубки громоздкие, тяжелые, хрупкие, нуждаются в высоковольтном (20–25 кВ) источнике постоянного тока, устройства развертки потребляют достаточно большую мощность, создаваемые трубкой поля не безвредны для человека.

Будущее за панелями.

Известно несколько типов плоских панелей для телевизионных приемников, но наиболее успешно развиваются газоразрядные и жидкокристаллические панели.

Газоразрядную панель образуют два плоскопараллельных стекла, между которыми размещены миниатюрные газоразрядные элементы. В инертном газе газоразрядного элемента под действием управляющих сигналов, формируемых микропроцессором устройства синхронизации и подаваемых на прозрачные электроды одного или обоих стекол, возникает разряд с ультрафиолетовым излучением. Это излучение вызывает свечение нанесенного на переднее или заднее стекло люминофора одного цвета черно-белой панели ил люминофоров красного, зеленного или синего цветов цветной панели. Напри мер, газоразрядная панель японской фирмы NHK имеет формат экрана 874x520 мм, 1075200 элементов с шагом 0.65 мм. толщину 6 мм и вес 8 кг. Панель обеспечивает яркость изображения 150 кд/м2 и 256 градаций яркости [22].

Основой жидкокристаллической панели служат также две плоскопараллельные стеклянные пластины. На одну из них нанесены прозрачные горизонтальные и вертикальные токопроводящие электроды. В местах их пересечения укреплены пленочные транзисторы, два вывода которых соединены электродами на стекле, а третий образует обкладку конденсатора. Втору пластину конденсатора представляет прозрачный металлизированный ело на второй стеклянной пластине, расположенной параллельно первой на расстоянии, измеряемой микронами. Между пластинами помещено органическое вещество (жидкий кристалл), поворачивающее под действием электрического поля плоскость поляризации проходящего через него света. С двух сторон панели укреплены поляроидные пленки, плоскости поляризации которых повернуты на 90° относительно друг друга.

Растр телевизионного изображения формируется сигналами, генерируемыми устройством синхронизации и подаваемыми на электроды стеклянны пластин. При подаче на эти электроды напряжения в точке их пересечен конденсатор заряжается и возникает электрическое поле между соответствующими обкладками конденсатора. В зависимости от величины напряжения изменяется угол поляризации жидкого кристалла между обкладками конденсатора. При отсутствии напряжения и, соответственно, электрического по жидкий кристалл поворачивает угол поляризации света от лампы подсвет на 90°, в результате чего свет свободно проходит через поляроидные пленки. В зависимости от напряжения на обкладках конденсатора угол поляризации может изменяться от 90° до 0°, а прозрачность ячейки панели – от максимальной до не пропускания света. Панель цветного телевизора содержит красный, зеленый и синий светофильтры, образующие триаду элемента разложения изображения. Например, панель фирмы Scarp LC–104TV1 имеет размеры по диагонали 26.4 см и 480 строк, каждая из которых содержит 19 цветных точек, что обеспечивает получение высококачественного цветного изображения.

Плоские панели имеют преимущества перед вакуумными кинескопами техническим параметрам, экологической безопасности и сроку службы.

Основными характеристиками телевизионных средств наблюдения являются чувствительность передающих трубок (ПЗС) и разрешающая способность. Чувствительность определяется чувствительностью материала фотокатода (мишени), а разрешение – количеством строк разложения изображения.

Современные передающие телевизионные трубки имеют чувствительность, обеспечивающую телевизионное наблюдение объектов при их освещенности от сотых долей до десятков тысяч лк.

Разрешающая способность современных телевизионных средств наблюдения составляет 350–650 линий. Чем выше разрешение, тем меньше длительность сигнала элемента изображения и тем шире спектр телевизионного сигнала. Ширина спектра телевизионного видеосигнала, передаваемого с частотой кадра 25 Гц и разрешением в 625 строк, составляет 6.5 МГц, телевизионного радиосигнала – 8 МГц.

С целью обеспечения скрытого наблюдения средства наблюдения камуфлируются под бытовые приборы и личные вещи. Некоторые средства приведены в табл. 3.5.

Видеопередатчики работают в диапазоне частот от 60 МГц до 2.3 ГГц и выше. Их мощность составляет от 40 мВт до 50 Вт, при этом обеспечивают дальность передачи от нескольких метров до 20 км. Например, дальность передачи миниатюрного передатчика РК 5115 при мощности 1.5 Вт на частоте 236 МГц составляет 400 м. Для увеличения дальности передачи используются специальные ретрансляторы [20].

Для приема телевизионных радиосигналов используются как телевизионные приемники широкого применения, так и специальные. Например, аудио- и видеоприемник РК 625 аудио и видео сигналов в диапазоне от 60 МГц до 1.2 ГГи, а видеоприемник RX 100 – в диапазоне 1.2– 2.3 ГГц. Видеоприемники имеют встроенные микропроцессоры, автоматизирующие операции Таблица 3.5. Закамуфлированные средства видеонаблюдения.

Наименование Тип, фирма Характеристики Поясная видеокамера РК5110. ПЗС. 280x350 линий, мин. Освещение 3 лк, угол зреELECTRONIC ния 55 °. 180 г, передатчик РК 1910,170 г Поясная видеокамера РК6020, ПЗС, 280x350, 3 лк, 180 г, магнитофон 50x110x с магнитофоном ELECTRONIC мм, время записи 3 ч.

Цветная видеосис- РК5325. Включает камеру «Сатикон». видеомагнитофон, усттема в кейсе ELECTRONIC ройство питания, монитор, 460x330x120 мм, Видео камера–зажим OSV–4, Видеокамера в булавке для гачетука. 2 лк. соединена Автомобильная ви- PKI780–S, Объектив в автомобильной антенне, видеокамера с деокамера ELECTRONIC передатчиком, дальность 3 км, 83x167x49 мм, 460 г Видеокамера в карти- OVS–13, Камера аналогична OVS–12. картина размером

EXPRESS

Фотокамера-часы PK420, Диаметр 34 мм, толщина 10 мм. вес 70 г, 7 снимков Фотокамера в дипло- PKI690.–S, Стандартный размер портфеля-дипломата, 7.5 кг.

Примечание. ПЗС – приборы с зарядовой связью.

по поиску и приему сигналов. Например, видеоприемник РК 6625 имеет 100 программируемых каналов памяти, 24-часовой таймер и автоматический режим поиска видеосигналов [20].

Для телевизионного наблюдения в ИК-диапазоне применяют телевизионные камеры с ПЗС, чувствительными к ИК-лучам. Для наблюдения в оптическом диапазоне применяют также лазеры, лучи которых в видимом или ИК-диапазонах подсвечивают объекты в условиях низкой естественной освещенности. Для этой цели луч лазера с помощью чающихся зеркал сканирует пространство с наблюдаемыми объектами, а отраженные от них сигналы принимаются фотоприемником так же, как при естественном освещении.

3.5.7 Характеристики приборов ночного видения.

Для визуально-оптического наблюдения в инфракрасном диапазоне необходимо переместить невидимое для глаз изображение в инфракрасном диапазоне (более 0.76 мкм) в видимый диапазон. Эта задача решается в приорах ночного видения (ПНВ).

Основу приборов ночного видения составляет электронно-оптический преобразователь (ЭОП), преобразующий невидимое глазом изображение объекта наблюдения в видимое. Самый простой ЭОП, так называемый стакан “Холста” состоит из двух параллельных пластин, помещенных в стеклянный стакан, из которого выкачан воздух (рис. 3.6).

Таблица 3.6. Показатели приборов ночного видения Поколения Коэффициент уси- Разрешающая способность, Чувствительность.

1 поколение:

Основные показатели приборов ночного видения различных поколений приведены в табл. 3.6 [13].

Внешняя сторона первой пластины – фотокатода покрыта светочувствительным материалом (слоем из окиси серебра с цезием), второй представляет металлизированный экран с люминофором. Между пластинами создает сильное электрическое поле разностью электрических потенциалов 4–5 кВ.

На фотокатод объективом проецируется изображение в ИК-диапазе. В каждой точке фотокатода под действием фотонов света возникают свободные электроны, количество которых пропорционально яркости соответствующей точки изображения. Электрическое поле между пластинами вырывает свободные электроны из фотокатода и, разгоняя, устремляет их к экрану с люминофором. В моменты столкновения электронов с люминофором возникают вспышки видимого света, яркость которых пропорциональна количеству электронов. Таким образом, на экране с люминофором формируется видимое изображение, близкое исходному в ИК-диапазоне.

Однако параметры (чувствительность, разрешение) рассмотренного невысокие и не обеспечивают наблюдение при низкой освещенности и, следовательно, добывание демаскирующих признаков об объекте с мелкими деталями.

С момента создания первого ЭОП в виде стакана Холста разработано сколько поколений этих приборов (от нулевого до 3-го). ЭОП 2 и 3-го поколений, которые используются в настоящее время, имеют чувствительный фотокатод, а между пластинами камеры размещается так называемая микроканальная пластина. Пластина содержит приблизительно 5000 микроканалов 1 мм2, внутри которых движутся электроны фотокатода. В результате устранения взаимного влияния электронов от соседних точек фотокатода, движущихся по разным микроканалам, достигается повышение разрешающей способности прибора ночного видения с микроканальной пластиной. Кроме того, в процессе движения электронов внутри каналов происходит «размножение» электронов в результате выбивания их из стенки канала при столкновении с нею движущихся электронов.

На основе ЭОП 2 и 3-го поколений созданы различные приборы ночного видения, включающие ночные бинокли и очки, артиллерийские приборы и прицелы для различных образцов военной техники. Самые малые по размерам ПНВ – очки на базе ЭОП 3-го поколения имеют угол зрения 40 град., дальность наблюдения (обнаружения) 500м при естественном освещении около 10–3 лк, массу 700 г.



Pages:     | 1 || 3 | 4 |


Похожие работы:

«Российская академия наук Сибирское отделение Институт систем информатики им. А. П. Ершова 20 лет Институту систем информатики им. А.П. Ершова Новосибирск 2010 Институт систем информатики им. А.П. Ершова был образован 20 лет тому назад на базе нескольких отделов ВЦ СО АН. Здесь перечисляются важнейшие достижения этих коллективов, в частности, Отдела программирования, созданного А.П. Ершовым в 1958 г. Представлена структура ИСИ СО РАН, основные направления исследований и результаты научной и...»

«Раздел V РАЗДЕЛ V ИНТЕРНЕТ: ИНФОРМАЦИОННЫЕ РЕСУРСЫ И СЕРВИСЫ Данный раздел пособия, не затрагивая теоретических аспектов работы сети Интернет (охарактеризованных в соответствующем разделе учебника Историческая информатика), ставит своей целью изложение основ работы в Интернете, а также дает основные рекомендации по поиску тематических информационных ресурсов в Интернете. В разделе подробно рассматриваются вопросы, связанные с написанием студентом-историком отчетной работы – обзора тематических...»

«Математическая биология и биоинформатика. 2013. Т. 8. № 1. С. 135–160. URL: http://www.matbio.org/2013/Ponomarev_8_135.pdf ================== МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ================= УДК: 538.9, 51-76 Дырочная проводимость в неоднородных фрагментах ДНК * **1 ©2013 Пономарев О.А. 1, Шигаев А.С., Жуков А.И. 2, Лахно В.Д. 1 Институт математических проблем биологии, Российская академия наук, Пущино, 1 Московская область, 142290, Россия Московский государственный университет дизайна и...»

«УДК. 004.42 Джаббаров Адиб Холмурадович Разработка алгоритмов и программ для автоматизированного длительного мониторинга деятельности сердца Специальность: 5А330204– Информационные системы диссертация на соискание академической степени магистра Научный руководитель : д.т.н.,проф., Зайнидинов Х.Н СОДЕРЖАНИЕ Введение.. Анализ...»

«IV Всероссийский социологический конгресс Cоциология в системе научного управления обществом Секция 41 Социальная информатика Секция 41. Социальная информатика Е. В. Болнокина Cоциальные индикаторы становления и развития гражданского общества В последние десятилетия облик гражданского общества все в большей степени начинает определять его социокультурная сущность. Гражданское общество становится своего рода индикатором для самых разнообразных ценностей, норм, стилей и образов жизни,...»

«Федеральное агентство по образованию АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГОУВПО АмГУ УТВЕРЖДАЮ Зав. кафедрой МАиМ Т. В. Труфанова _ 2007 г. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ Учебно-методический комплекс по дисциплине для специальности 010101 – Математика, 010501 – Прикладная математика Составитель: Н. А. Грек Благовещенск 2007 г. Печатается по решению редакционно-издательского совета факультета математики и информатики Амурского государственного университета Грек Н. А. Дифференциальная геометрия:...»

«РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ СИСТЕМ ИНФОРМАТИКИ ИМ. А.П. ЕРШОВА НАУЧНЫЙ СОВЕТ ПО МУЗЕЯМ И.А. Крайнева, Н.А. Черемных Путь программиста Ответственный редактор доктор физико-математических наук, профессор А. Г. Марчук Новосибирск 2011 УДК 007(092) ББК 32.81 Е 80 Путь программиста / И.А Крайнева., Н.А. Черемных. Новосибирск: Нонпарель, 2011. 222 с. ISBN 978-5-93089-033-4 Биография выдающегося ученого, математика, программиста, создателя Сибирской школы программирования...»

«“School Goes Digital” -1Преподавание физики в школах, академических лицеях и ВУЗах с использованием информационно-компьютерных технологий Лилия Владимировна Николенко, координатор по вопросам электронного образования пилотной инициативы “School Goes Digital” Интернет-проекта UNDP E-mail: iqmena@edunet.uz Физическая наука всегда лежит в первооснове всех достижений человеческой цивилизации, компьютерная техника и Интернет не исключение. Однако зачастую складывается парадоксальная ситуация, когда...»

«УСТАНОВОЧНАЯ СЕССИЯ I КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ Институт информационных коммуникаций и библиотек ДИСЦИПЛИНА, МАТЕРИАЛЫ К СЕССИИ СПЕЦИАЛИЗАЦИЯ Вопросы Отечественная История как наука. Отечественные научно-исторические школы и их представители. 1. история Исторические источники и их виды. • библиотечноФормационный и цивилизационный подходы к периодизации истории. Западная и 2. информационная восточная цивилизации. деятельность (зачет) Восточные славяне в древности, этапы образования государства....»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Зав. кафедрой ОМиИ _Г.В. Литовка _2007 г. ИНФОРМАТИКА УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС для специальностей: 040101 – Социальная работа 040201 – Социология Составители: А.Н. Киселева, старший преподаватель О.В. Ефимова, ассистент Т.А. Макарчук, к.п.н., доцент Н.А. Чалкина, к.п.н., доцент Благовещенск, Печатается по решению редакционно-издательского совета факультета математики и информатики Амурского...»

«Предисловие к третьему изданию Международный консорциум Электронный университет Московский государственный университет экономики, статистики и информатики Евразийский открытый институт Т.И. Захарова Организационное поведение Учебно-методический комплекс Москва 2008 1 Организационное поведение УДК 65 ББК 65.290-2 З 382 Захарова Т.И. ОРГАНИЗАЦИОННОЕ ПОВЕДЕНИЕ: Учебно-методический комплекс. – М.: Изд. центр ЕАОИ. 2008. – 330 с. ISBN 978-5-374-00117-4 © Захарова Т.И., 2008 © Евразийский открытый...»

«Информационные технологии в образовании Ежеквартальный бюллетень №3 (7) Июль 2005 Координационного совета НГТУ по информатизации образования В этом выпуске: Телематика’2005 (О. В. Казанская). с. 2 Развитие научно-образовательной сети в Сибирском федеральном округе (Евг. Б. Гаврилов). с. 6 Оснащенность компьютерами рабочих мест преподавателей НГТУ: результаты исследования (Н. С. Фоменко).. с. 8 Научная электронная библиотека E-LIBRARY.RU (Т. В. Баздырева). с. 10 Новые издания ИДО НГТУ. с....»

«ЭРЖАНОВ МАКСУД ОТАБАЕВИЧ РАЗРАБОТКА АЛГОРИТМОВ И ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ПОСТРОЕНИИ ГЕОМЕТРИЧЕСКИЕ ФРАКТАЛОВ НА БАЗЕ R-ФУНКЦИИ Специальность: 5А521902 – Управление и обработка информации. ДИССЕРТАЦИЯ На соискание академической степени магистра Работа рассмотрена Научный руководитель и допускается к защите проф., д.ф.-м.н. Назиров Ш.А. зав. кафедрой ИТ _ Джайлавов А.А. _ _ _ 2012г....»

«Международный консорциум Электронный университет Московский государственный университет экономики, статистики и информатики Евразийский открытый институт И.Б. Хмелев Мировая экономика Учебно-методический комплекс Москва 2008 1 УДК 311.311 ББК 65.051 Х 651 Хмелев И.Б. Мировая экономика: Учебно-методический комплекс. – М.: Изд. центр ЕАОИ, 2008. – 238 с. Рекомендовано Учебно-методическим объединением по образованию в области антикризисного управления в качестве учебного пособия для студентов...»

«Хорошко Максим Болеславович РАЗРАБОТКА И МОДИФИКАЦИЯ МОДЕЛЕЙ И АЛГОРИТМОВ ПОИСКА ДАННЫХ В INTERNET/INTRANET СРЕДЕ ДЛЯ УЛУЧШЕНИЯ КАЧЕСТВА ПОИСКА Специальность 05.13. 17 – Теоретические основы информатики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Новочеркасск – 2014 2 Работа выполнена на кафедре Информационные и измерительные системы и технологии ФГБОУ ВПО ЮРГПУ(НПИ) им М.И. Платова. Научный руководитель Воробьев Сергей Петрович кандидат...»

«Борис Парашкевов ОТИМЕННА ЛЕКСИКА В СЛОВНИКА НА БъЛГАРСКИЯ ЕЗИК ЕНЦИКЛОПЕДИЧЕН РЕЧНИК НА ПРОИЗВОДНИ ОТ СОБСТВЕНИ ИМЕНА предисловие Ч етивност и информативност, драги читателю, беше ръководният формалносъдържателен замисъл на този лексикон, който в структурно отношение е първи по рода си сред нашите речникови пособия. За негов обект бе избрана една специфична по своето възникване и внушителна по обема си група съществителни и прилагателни имена, както и незначителен брой глаголи в българския...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Челябинский государственный педагогический университет ФГБОУ ВПО ЧГПУ Утнерждвю. В. В. Садыри ii ОТЧЕТ о результатах самообследования Челябинского государственного педагогического университета по основной образовательной программе по специальности 230202 - Информационные технологии в образовании Челябинск 2013 Содержание Введение 3 1....»

«ОБОСНОВАНИЕ К ПРОЕКТАМ ФЕДЕРАЛЬНЫХ ГОСУДАРСТВЕННЫХ ОБРАЗОВАТЕЛЬНЫХ СТАНДАРТОВ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПО УРОВНЮ БАКАЛАВРИАТА И УРОВНЮ МАГИСТРАТУРЫ ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ СТАТИСТИКА Обоснование соответствия предлагаемого проекта ФГОС ВПО стратегическим целям развития высшего профессионального образования, потребностям обучающихся, общества и рынка труда В соответствии с потребностями общества, смены парадигмы стандартизации высшего профессионального образования, а также с...»

«СОДЕРЖАНИЕ 1. Целевой раздел...с.2 1.1. Пояснительная записка..с.2 1.2. Планируемые результаты освоения обучающимися основной образовательной программы..с.6 1.2.1. Планируемые результаты междисциплинарной программы Формирование универсальных учебных действий.с.8 1.2.1.1. Планируемыерезультаты междисциплинарной программы Чтение. Работа с текстом...с.11 1.2.1.2. Планируемые результаты освоения отдельных предметов, курсов.с.13 1.2.2. Русский язык..с.13 1.2.3. Литературное чтение..с.16...»

«Российская академия наук Сибирское отделение Институт систем информатики имени А.П.Ершова СО РАН Отчет о деятельности в 2003 году Новосибирск 2004 Институт систем информатики имени А.П.Ершова СО РАН 630090, г. Новосибирск, пр. Лаврентьева, 6 e-mail: iis@iis.nsk.su http: www.iis.nsk.su тел: (3832) 30-86-52, факс: (3832) 32-34-94 Директор Института д.ф.-м.н. Марчук Александр Гурьевич e-mail: mag@iis.nsk.su http: www.iis.nsk.su тел: (3832) 30-86- Заместитель директора по науке д.ф.-м.н. Яхно...»






 
© 2014 www.kniga.seluk.ru - «Бесплатная электронная библиотека - Книги, пособия, учебники, издания, публикации»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.